
CE 329, Fall 2015

Third Mid-Term Exam

You may only use pencils, pens and erasers while taking this exam. You may NOT use a calculator. 
You may not leave the room for any reason; if you do, you must first turn in your exam, and you will not be 

permitted to resume taking the exam.
This exam is printed on two-sided pages; there are 6 short answer questions, each worth 5 points 

and two problems worth 35 points each for a total of 100 points. Answer All questions, including the short 
answer questions, in the blue book that has been provided to you. When the exam ends, put these sheets 

inside your blue book and turn both in.
For the problems you only need to fully show what equations to use and to fully explain how to use 

them to obtain the requested answer. You do not need to perform any calculations, and you do not need 
to perform any algebra beyond that needed to obtain the equations to be solved. If you need to use 

numerical methods to answer a question, provide the information listed below

Numerical Methods
If you need to fit a linear model to data, you must state that it is necessary to fit a model to the 

data numerically and you must explicitly identify (a) the specific linear model being fit to the data, (b) the 
response and set variables in the model and (c) the parameters in the model. Then you must (d) show 

how to calculate the value of each response and set variable for an arbitrary data point. Once you have 
provided that information, you may assume that the correlation coefficient, the best value of each model 

parameter and its 95% confidence interval and either a model plot or a parity plot and residuals plots 
have been found using appropriate numerical software, and you may use those results as you need to 

complete the problem.
If the solution to a problem involves solving a set of non-linear algebraic equations, you must 

state that it is necessary solve a set of non-linear algebraic equations numerically and you must (a) 
explicitly identify the equations to be solved and an equal number of unknowns to be solved for by writing 

the equations in the form, 0 = fi(unknowns list) = expression. You then must (b) show how to calculate 

every quantity that appears in those functions, assuming you are given values for the unknowns. Once 
you have provided (a) and (b), you may assume that the values of the unknowns have been found 

numerically, and you may use those values as needed to complete the problem.
If the solution to a problem involves solving a set of initial value ordinary differential 

equations, you must state that it is necessary to solve a set of initial value ODEs numerically and you 
must (a) explicitly identify the equations to be solved, the independent variable and  the dependent 

variables by writing the equations in the form, (derivative i ) = fi(independent variable, dependent variable 

list) = expression. Then you must list values or show how to calculate (b) initial values of the independent 
and dependent variables, (c) the final value of either the independent variable or one of the dependent 

variables and (d) every quantity that appears in those functions, assuming you are given values for the 
independent and dependent variables. Once you have provided (a), (b) and (c), you may assume that the 



final values of the remaining independent and dependent variables have been found numerically, and you 
may use those values as needed to complete the problem.

If the solution to a problem involves solving a set of boundary value ordinary differential 
equations, you must state that it is necessary to solve a set of boundary value ODEs numerically and 

you must (a) explicitly identify the equations being solved, the independent and dependent variables in 
those equations and the boundaries of the range of the independent variable over which the equations 

are to be solved, (b) list values or show how to calculate boundary conditions for each dependent 
variable; the number of boundary conditions for a particular dependent variable must equal the highest 

order of derivative of that dependent variable appearing in the equations being solved and (c) list values 
or show how to calculate every quantity in the equations being solved other than the derivatives, 

assuming you are given values for the independent and dependent variables. Once you have provided 
(a), (b) and (c), you may assume that the value of each dependent variable and its first derivative with 

respect to the independent variable is known at any position between the boundaries, and you may use 
those values as needed to complete the problem.

Indefinite Integrals

 
a dx∫ = ax ; 

  
xn dx∫ = xn+1

n+1
 (n ≠ −1); 

  
dx
x

= ln x( )∫ ; 
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a + bx( ) =∫
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ln a + bx( ) ;
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ax
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− 2a a + bx( ) + a2 ln a + bx( )⎡
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⎢
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⎦
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a + bx( )2 = 1
b2 ln a + bx( ) + a
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⎡

⎣
⎢

⎤

⎦
⎥∫ ; 
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⎡

⎣
⎢

⎤

⎦
⎥∫ ; 
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− a

b2 ln a + bx( )∫ ;

Thermodynamic Relationships

ΔH j
0 298 K( ) = ν i, jΔH f ,i

0

i= all
species

∑ 298 K( ) = ν i, j −ΔHc,i
0 298 K( )( )

i= all
species

∑ ;  K j T( ) = ai
νi , j

i=all
species

∏ ; 

ΔH j
0 T( ) = ΔH j

0 298 K( ) + ν i, j Ĉp,i dT
298K

T

∫
⎛
⎝⎜

⎞
⎠⎟i= all

species

∑ ; ΔGj
0 298 K( ) = ν i, jΔGf ,i

0 298 K( )
i=all

species

∑ ; 

K j 298 K( ) = exp
−ΔGj

0 298 K( )
R 298K( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

;K j T( ) = K j 298 K( )exp
ΔH j

0 T( )
RT 2 dT

298  K

T

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

; 
  
ai =

yi P
1 atm

; 

  
ai =

yiϕ i P
1 atm

;  ai = γ ixi ;  ai = xi ;  ai = hixi
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Rate, Composition and Reaction Progress Relationships

  
ξ j =

ni − ni
0( )

j

ν i, j

; 
   

!ξ j =
!ni − !ni

0( )
j

ν i, j

; ni = ni
0 + ν i, jξ j

j=1

Nind

∑ ; 
  
fk =

nk
0 − nk

nk
0 ; 

  
rj =

ri, j

ν i, j

= 1
V

dξ j

dt
; 

  

gk =
fk

fk( )
equil

=
nk

0 − nk

nk
0 − nk( )

equil

;
 
Ci =

ni

V
;
  
Ci =

!ni
!V

; 
  
!V =
!ntotal RT

P
; 
    
!V = !V 0  constant

ρ( ) ;
 
P =

ntotal RT
V

;

  
P =
!ntotal RT
!V

;
 
Pi =

ni RT
V

;
  
Pi =
!ni RT
!V

; Pi = yi P ; 
 
µ =

rg

Ccells

Elementary Reaction Relationships

  
rAB− forward = N Avσ ABCACB

8kBT
πµ

exp
−E j

RT
⎛

⎝
⎜

⎞

⎠
⎟ ; 

  
rAA− forward = N Avσ AACA

2 2kBT
πµ

exp
−E j

RT
⎛

⎝
⎜

⎞

⎠
⎟ ;

  
rABC− forward = 8N Avσ ABσ BClCACBCC

2kBT
π

1
µAB

+ 1
µBC

⎛

⎝⎜
⎞

⎠⎟
exp

−E j

RT
⎛

⎝
⎜

⎞

⎠
⎟ ; 

  
rj− forward =

q‡

NqABqC

kBT
h

⎧
⎨
⎩

⎫
⎬
⎭

exp
−ΔE0

0

kBT
⎛

⎝⎜
⎞

⎠⎟
AB⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦ ;

  

rj = k j , f i⎡⎣ ⎤⎦
−ν i , j

i=all
reactants

∏ − k j ,r i⎡⎣ ⎤⎦
ν i , j

i=all
products

∏ = k j , f i⎡⎣ ⎤⎦
−ν i , j

i=all
reactants

∏
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1−

i⎡⎣ ⎤⎦
ν i , j

i=all
species

∏

K j ,eq

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; 

  

ri, j = ν i,srs
s= all
steps

∑ ; 
 
rj = rsrd

; 

  

rRI , j = ν RI ,srs
s= all
steps

∑ = 0 ;

  

Ccat
0 = Ccat , free + νcat ,iCcat ,i

i= all
catalyst

complexing
species

∑ ; 
 
Cisurf

= Csitesθ i ; 

  

θvacant + θ i
i  = all

adsorbed
species

∑ = 1

Age Function Relationships

  
F λ( ) = wt − w0

wf − w0

; 
  
F λ( ) = 1− exp −λ

t
⎧
⎨
⎩

⎫
⎬
⎭

; 
   
F λ( ) =

!M wout t( )− w0
⎡⎣ ⎤⎦dt

t0

′t

∫
mtot

; 

  

F λ( ) = 0 for t < t

F λ( ) = 1 for t ≥ t
; 

  
xtotal = xN x( )

x=0

x=∞

∑ ; 
  
xtotal = x dN x( )

x=0

x=∞

∫ ; 
  
ytotal = y x( )N x( )

x=0

x=∞

∑ ; 
  
ytotal = y x( )dN x( )

x=0

x=∞

∫ ; 

  
Ntotal = N x( )

x=0

x=∞

∑ ; 
  
Ntotal = dN (x)

x=0

x=∞

∫ ; 

  

yaverage =
y x( )N x( )

x=0

x=∞

∑

N x( )
x=0

x=∞

∑
; 

  

yaverage =
y x( )dN x( )

x=0

x=∞

∫

dN x( )
x=0

x=∞

∫
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Reactor Relationships

   
τ = V
!V 0 ; 

  
SV = 1

τ
; 

  

dni

dt
=V ν i, jrj

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

   

!Q − !W = niĈp,i
i=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

dT
dt

+V rjΔH j
j=all

reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
−V dP

dt
− P dV

dt
;

   

!ni
0 +V ν i, jrj

j=all
reactions

∑ = !ni +
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

;

   

!Q − !W = !ni
0 Ĉp−i dT

T 0

T

∫( )
i=all

species

∑ +V rjΔH j T( )( )
j=all

reactions

∑ +V
!niĈp−i

!Vi=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

dT
dt

− P dV
dt

−V dP
dt

;

   

∂ !ni

∂ z
= πD2

4
ν i, jrj

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− ∂
∂ t
!ni
!V

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

; 
   

∂ P
∂ z

= − G
gc

4
πD2

⎛
⎝⎜

⎞
⎠⎟
∂ !V
∂ z

− 2 fG2

ρD
; 

  

∂ P
∂ z

= −1− ε
ε 3

G2

ρΦsDpgc

150 1− ε( )µ
ΦsDpG

+1.75
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

;

   

πDU Te −T( ) = ∂T
∂ z

!niĈp−i
i=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ πD2

4
rjΔH j

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ πD2

4
∂T
∂ t

!niĈp−i

!Vi=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− ∂ P
∂ t

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

;

 

dni
dt

= !ni +V ν i, jrj
j=all

reactions

∑ ; 

 

!Q − !W = !ni ĥi − ĥi,stream( )
i=all
species

∑ + dT
dt

niĈpi( )
i=all
species

∑ +V rjΔH j( )
j=all

reactions

∑ − dP
dt
V − P dV

dt
; 

−Dax
d 2Ci

dz2
+ d
dz

usCi( ) = ν i, jrj
j=all

reactions

∑ ;Der
∂2Ci

∂r2
+ 1
r
∂Ci

∂r
⎛
⎝⎜

⎞
⎠⎟
− ∂
∂z

usCi( ) = ν i, jrj
j=all

reactions

∑ ; 

 

λer
∂2T
∂r2

+ 1
r
∂T
∂r

⎛
⎝⎜

⎞
⎠⎟
− usρ fluid

!Cp, fluid
∂T
∂z

= rjΔH
j=all

reactions

∑

 4



Other Relationships

 

!ni,hot Ĉp,i dT
Thot ,in

Thot ,out

∫
i=all
species

∑ + !ni,cold Ĉp,i dT
Tcold ,in

Tcold ,out

∫
i=all
species

∑ = 0 ; 

 

!ni,hot Ĉp,i dT
Thot ,in

Thot ,out

∫
i=all
species

∑ +UAΔT = 0 ; 

ΔTAM =
Tcold ,out +Thot ,out

2
−
Tcold ,in +Thot ,in

2
; ΔTLM =

Thot ,out −Tcold ,in( )− Thot ,in −Tcold ,out( )
ln

Thot ,out −Tcold ,in( )
Thot ,in −Tcold ,out( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

; 

ΔTcold = Thot ,out −Tcold ,in ; RR =
recycle flow

process exit  flow
; 
 
!ni, feed +

RR !ni,reactor  out

1+ RR

− !ni,reactor  in = 0 ; 

 

!ni, feed Ĉp,i dT
Tfeed

Treactor  in

∫
i=all
species

∑ + !ni,r Ĉp,i dT
Treactor  out =Trecycle( )

Treactor  in

∫
i=all
species

∑ = 0

Short Answer Questions (5 points each)
1. If the rate expression for the liquid phase reaction A → P is r = k [A]2 and the heat of reaction is small
a. three CSTRs in parallel would be a good reactor choice
b. a CSTR would be preferred over a PFR
c. a PFR would be preferred over a CSTR
d. a CSTR and a PFR would be equivalent in performance.

2. In the energy balance for an ideal CSTR,  
!Q

a. is usually equal to UA(Te-T)
b. is zero for an isothermal system
c. is the rate of heat input to the system
d. all the above (a-c)
e. (a) and (c), but not (b)

3. True or false? When designing a parallel reactor network it is advantageous to mix a stream with low 
conversion together with a stream with high conversion.

4. True or false? When the axial dispersion coefficient is equal to zero, the axial dispersion model 
becomes identical to the CSTR model.
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Questions 5 and 6 refer to the following figure:

5. Which stream in the schematic above is used as the initial conditions when solving the PFR design 
equations
a. 0
b. in
c. out
d. f
e. r

6. The recycle ratio is defined as the ratio of the volumetric flow rates of which two streams
a. 0
b. in
c. out
d. f
e. r 

Problems (35 Points Each)
7. Liquid phase reaction (1) obeys first order kinetics with a rate constant equal to 0.8 h-1 at 163 °C and 
an activation energy of 28960 cal mol-1. The heat of reaction is equal to -83 cal g-1 and the molecular 
weights of A and B are equal to 250. The heat capacity of both A and B are equal to 0.5 cal g-1 K-1 and 
their densities are 0.9 g cm-3. Pure A at 20 °C flows into an adiabatic 100 gal CSTR at a rate of 4 gal h-1. 
The effluent from the CSTR is fed to an adiabatic PFR. What PFR volume will be required to attain 97% 
conversion, and what will be the outlet temperature of the PFR?

A → B (1)

8. A semibatch reactor is initially charged with 1.5 L of a solution containing 0.01 mol/L of A. To start the 
process, 0.03 L/min of a solution containing 0.01 mol/L of B starts flowing into the reactor. The reaction 
A + B → S + T takes place isothermally with a rate given by the equation below. Assuming constant 
density, calculate the moles of A remaining in the reactor as a function of time until the reactor volume (5 
L) becomes full.

r = (5 L/mol/min) CA CB
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